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ABSTRACT

In this study, we harness the signal processing potential of neurons, utilizing the Izhikevich point neuron model to efficiently
decode the slope or amplitude of fluctuating continuous input signals. Using biophysically detailed compartmental neurons
often requires significant computational resources. We present a novel approach to create behaviours and simulate these
interactions in a lower-dimensional space, thereby reducing computational requirements. We began by conducting an extensive
search of the Izhikevich parameter space, leading to the first significant outcome of our study: i) the identification of optimal
parameter sets for generating slope or amplitude detectors, thereby achieving signal processing goals using neurons. Next, we
compared the performance of the slope detector we discovered with a biophysically detailed two-compartmental pyramidal
neuron model. Our findings revealed several key observations: ii) bursts primarily occurred on the rising edges of similar
input signals, iii) our slope detector exhibited bi-directional slope detection capabilities, iv) variations in burst duration encoded
the magnitude of input slopes in a graded manner. Overall, our study demonstrates the efficient and accurate simulation of
dendrosomatic behaviours. Real-time applications in robotics or neuromorphic hardware can utilize our approach. While
biophysically detailed compartmental neurons are compatible with such hardware, Izhikevich point neurons are more efficient.
This work has the potential to facilitate the simulation of such interactions on a larger scale, encompassing a greater number of
neurons and neuronal connections for the same computational power.

Introduction

There is a wide range of approaches to modelling neuronal activity. Single-neuron models are often required to reproduce very
specific features of existing experimental data, e.g. replicating the bursting mechanisms and gradient detection of Pyramidal
neurons1. Often these models represent known biophysical mechanisms in compartments, such as the pyramidal neuron model
which combines the soma and axon in one compartment and the dendritic region in another, forming a two-compartmental
model. These spatially complex models are usually focused on the computational aspects of the information processing
within the neuron, prioritizing accuracy and biological realism rather than efficiency. However, in various research fields like
gas-based navigation in robotics, there is a need for less computationally expensive models that efficiently process information,
particularly amplitude and slope detectors.

Amplitude and slope are important dynamical features of sensory signals, encoding information about the scene2–4. The
instantaneous dynamics of gas concentration in a turbulent plume are extremely complex2, 5, and this rich temporal structure and
spatial distribution of gas plumes demand rapid5–7, low-latency responses to temporal cues in these signals. We created a neuron
from the Izhikevich8 point neuron model, which inherently processes information with less computation in lower-dimensional
space. We demonstrate how this neuron model can mimic the behaviours from the biophysically detailed two-compartmental
pyramidal neuron model1 without compromising accuracy.

Izhikevich8 maintained an effective trade-off between the biological plausibility of Hodgkin-Huxley-type dynamics and the
computational efficiency of integrate-and-fire neurons, making it a popular choice for implementing neuronal computations onto
neuromorphic hardware9–11 and robotic platforms12, 13. Izhikevich presented a two-dimensional system of ordinary differential
equations (Eq. 1) with an auxiliary after-spike reset (Eq. 2). The parameters in the equations map to known biological features
of neuronal spiking processes.

The dimensionless variables, membrane potential (v) and recovery variable (u), represent the core elements of the model.
The parameters (a, b, c, d) control the recovery rate of u, sensitivity of u, after-spike reset of v, and after-spike reset of
u, respectively. The model’s mathematical simplicity, with only one non-linear term (v2), contributes to its computational
efficiency.



v′ = 0.04v2 +5v+140−u+ I

u′ = a(bv−u)
(1)

if v≥ 30mV, then

{
v← c
u← u+d

(2)

While the Izhikevich model does not capture specific biophysical mechanisms or the spatial complexity of neurons,
it has demonstrated the ability to replicate various types of known neural behaviours, including intrinsically bursting and
fast-spiking. In our study, we compare a bursting slope-detecting neuron, that we created using the Izhikevich model, with the
two-compartmental biophysical neuron model1. It has been reported14 that pyramidal neurons detect temporal changes (slope)
and frequently firing short bursts of high frequency. The model includes a dendrite compartment with persistent sodium and
slow potassium currents responsible for bursting behaviour, while the somatic region contains Hodgkin-Huxley-type15 currents
that generate fast spikes.

Through simulations with sinusoidal and naturalistic input currents, the biophysical neuron model investigates the temporal
features triggering bursting behaviour and suggests that the neuronal output depends more on the slopes of the input signal than
the amplitudes. If the neuron we propose exhibits comparable behaviour (which we later show to be the case), it could offer an
efficient and accurate means of simulating dendrosomatic behaviours.

Results

We present the results from our search of the Izhikevich parameter space and analyse their implications. We show how we
located the optimal sets to create the strongest slope and amplitude detectors and test for the neuron’s robustness. We then
present the results from our three-part comparison study, where we compared the Izhikevich bursting slope detector neuron we
discovered to a biophysically detailed two-compartmental pyramidal neuron model1. The results were carefully displayed to
enable a side-by-side comparison with the results from the biophysical neuron model, including the analysis.

i) Identifying slope and amplitude detectors in the Izhikevich parameter space

In this section, we present the results of our search for optimal detectors in the Izhikevich parameter space. We show three
identical grids that cover a wide range of values for the parameters a, c, and d.

A rectified sinusoidal input signal with a frequency of 4 Hz was injected into each Izhikevich point neuron using the defined
parameters. The spike trains were extracted and compared to the original input signal to determine the features that triggered the
neuron’s response. We specifically looked at the spike rate corresponding to the rising edges of the input signal to identify slope
detectors and the spike rate corresponding to the peaks of the input signal to identify amplitude detectors. Later, we investigated
weather there was a relationship between these detectors and the bursting mechanisms, producing the third grid in these results.

The grids display the slope detection percentage, amplitude detection percentage, and bursting percentage for each
parameter combination. For instance, a neuron with a 100 % amplitude detection percentage only spikes on the peaks of the
input signal.

Fig. 1a shows the grid for slope detection. We observed that low values of parameter a, particularly with higher c values
(such as c =−35), produces strong slope-detecting behaviour. This pattern was consistently observed across various regions of
the grid. Additionally, the grid suggests that the parameter d should not be set too low, as doing so resulted in neurons exhibiting
0 % slope detection in certain regions of the map. Based on these observations, we selected the neuron with parameters
{a:0.01, b:0.2, c:-35, d:5.0} as an example slope detector (Fig. 1b). This neuron configuration was chosen based on its strong
slope-detecting capabilities demonstrated in our analysis.
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Figure 1. Top panel: results of the search for parameter combinations that enable slope-detection; Izhikevich parameters d
(x-axis), a (y-axis), and c (panels). The slope-detection capability is confined to specific regions in parameter space. The slope
detection percentage highlights the regions that generate strong slope detectors (yellow). Bottom panel: comparison of a slope
detector we discovered with parameters {a:0.01, b:0.2, c:-35, d:5.0} and a rectified segment of the 4 Hz sinusoidal input signal.
A burst of spikes on the rising flank illustrates the slope-detection behaviour for which the neuronal parameters have been
optimized.
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Figure 2. Results from search of Izhikevich parameters d (x-axis), a (y-axis), and c. Yellow regions indicate strong top panel:
amplitude detectors; bottom panel: bursting behaviour (inter-spike interval ≤ 10 ms).
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Fig. 2a shows the grid for amplitude detection. We observed that lower values of d combined with higher a values produces
strong amplitude-detecting behaviour. Higher c values also generated a larger area of amplitude-detecting neurons. This was
observed in the slope detector grid (Fig. 1a), suggesting a commonality with the membrane voltage reset.

Comparing the slope detector grid (Fig.1a) and the amplitude detector grid (Fig.2a) reveals cases where a set of parameters
can produce both slope and amplitude-detecting neurons. For instance, the neuron with parameters {a:0.04, b:0.2, c:-35, d:5.0}
exhibits a slope detection percentage and an amplitude detection percentage of 50 %, indicating that it spikes on both the rising
edges and peaks of the signal.

Fig. 2b shows the grid for bursting behaviour. It shows that higher c values generally lead to bursting neurons. The highest
explored value (i.e., c =−35) produced neurons that were almost always bursting. The combination of parameters a and d also
affects the bursting mechanisms, with higher values of both leading to a decrease in the burst percentage. Furthermore, we
observed no strong relationship between the bursting grid (Fig.2b) and the slope (Fig.1a) and amplitude (Fig. 2a) detector grids.

(a)

(b)

Figure 3. Top trace: Gaussian white noise input nA (5 Hz; µ = .006; σ = .015). Bottom trace: membrane potential mV
response. Top panel: the neuron has parameters {a:0.01,b:0.2,c:-50,d:8.0}. Asterisks mark spikes (grey dotted lines added for
clarity). Bottom panel: neuron has parameters {a:0.05,b:0.2,c:-40,d:1.0}. Asterisks mark burst onsets. Bursts (ISI≤10 ms)
occur on the peaks of the current. No single spikes were produced.

Fig. 3a demonstrates an example of a slope detector without the bursting mechanism. This neuron, with parameters {a:0.01,
b:0.2, c:-50, d:8.0}, is one of the strongest slope detectors, with a slope detection percentage of 100 %, and simultaneously one
of the weakest bursting neurons with a burst percentage of 0 %. We tested its robustness by injecting Gaussian white noise
input (5 Hz; µ = 0.006; σ = 0.015). We show that the spike rate alone can indicate input slopes and that the detector is not
limited to sinusoidal input signals.

Finally, we present the output from one of the amplitude detectors and demonstrate its robustness by injecting a similar
signal. This time, we demonstrate a neuron with an amplitude detection percentage of 100 % and burst percentage of 100 %.
Fig. 3b shows that the detector bursts preferentially at signal peaks.

ii) Bursting slope detector comparison
In our comparison study, we conducted experiments to compare the bursting slope detector neuron we discovered with the
biophysical neuron model proposed by Kepecs et al.1. This model features a dendrite compartment that facilitates bursting

5/11



behaviour and a somatic region that produces fast spikes. For a fair comparison, we developed a robust neuron that achieved a
100 % slope detection percentage and a 100 % burst percentage. We generated similar input signals and analyzed the output
responses to evaluate the performance of the detector.

The first result of our comparison study is shown in Fig. 4a, where we plotted the membrane potential response of the
bursting slope detector neuron to a Gaussian white noise input signal (5 Hz; µ = .008; σ = .015). The bursting slope detector
neuron successfully mimicked the biophysical neuron model’s ability to signal consecutive up-strokes without intervening
down-strokes. However, we observed that the detector we discovered produced a cleaner and more efficient output, as there
were no isolated spikes present.

Furthermore, we analysed the response of the bursting slope detector to stimulus up-strokes at different frequencies. The
Spike-triggered Average (STA) plot was used to identify the features of the input signal triggering its response. Fig. 4b
demonstrates that this detector is capable of responding to stimulus up-strokes across a wide range of frequencies, similar to the
behaviour observed in the biophysical neuron model.
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Figure 4. Top panel: response of the neuron with parameters {a:0.01,b:0.2,c:-35,d:5.0}. Top trace: Gaussian white noise input
nA (5 Hz; µ = .006; σ = .015). Bottom trace: membrane potential mV response. Asterisks mark burst onsets (grey dotted lines
added for clarity). Bursts (ISI≤10 ms) occur on the rising edge of the current. No single spikes were produced. Bottom panel:
spike-triggered Average (STA) showing features of the input that triggered bursts at different frequencies. The results
demonstrate that the bursting slope detector neuron we discovered follows stimulus up-strokes over a wide range of frequencies.

iii) Bi-directional slope detection
We present our second result of the comparison study of the bursting slope detector neuron we discovered to the biophysical
neuron model1, specifically to determine whether the slope-detector was capable of bi-directional slope detection.

The results revealed that bursts occurred on the up-strokes of the signal (e neuron) and on the down-strokes of the inverted
signal (i neuron), as demonstrated in Fig. 5, thereby showing that the slope detector was capable of bi-directional slope
detection.
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e neuron

i neuron

Figure 5. Middle trace: input current nA (5 Hz; µ = .008; σ = .015). Top trace: membrane potential mV response from e
neuron. Bottom trace: membrane potential mV response from i neuron, where the middle trace was inverted. Asterisks mark
burst onsets (grey dotted lines added for clarity).

iv) Burst duration encoding
We present our final results from the comparison study, were we investigated whether the slope detector signalled the slope
magnitude. In this case, we increased the variable a from 0.01 to 0.06, resulting in the neuron producing bursts of 7 or 8 spikes
(B7, B8 in Fig.6a). The KED plot shows the number of spikes per burst compared to the slopes of the input signal. These burst
durations corresponded to different slope magnitudes with little overlap, as indicated by AUC value of 0.97 for the ROC curve
in Fig.6b.
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Figure 6. Left: distributions of input slopes for bursts durations, where the point neuron with parameters
{a:0.06,b:0.2,c:-35,d:5.5} produces 7- or 8-spike bursts. Right: receiver operator characteristics (ROC) curve showing
discriminability of 7- and 8-spike burst distributions (from Fig. 6a). The area under the curve (AUC) value is included for
clarity.
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The results revealed that the detector not only marked the occurrences of slopes in the signal but also encoded the magnitude
of input slopes in a graded manner through the length of bursts.

Discussion
The main aim of this work was to create a neuron which exhibits a processing necessity. Our study provides valuable insights
into the creation of amplitude and slope-detecting neurons with computational efficiency. We identified sets of model parameters
that enable neurons to signal the rate of change in an input signal, while being minimally affected by its absolute value. Such
behaviour could be useful e.g. to implement a high-pass filter with model neurons in a neuromorphic signal processing context,
moving beyond the sole goal of mimicking biological observations.

Such slope-detecting neurons could be applied to various fields of research, for example, gas-based navigation in robotics.
Amplitude and slope are important dynamical features of sensory signals, encoding information about the scene2–4. The
ability to detect both up-strokes and down-strokes of the input signal enables potential applications in gas-based navigation
research3, 5, 16, 17, where detecting the presence and absence of gas provides valuable information about the olfactory scene. The
ability of the model to report the magnitude of input slopes in a graded manner through the length of bursts produced further
supports an application in gas-based navigation studies, where the duration of slope durations can inform the distance to an
odour source3.

Sensor devices that can very quickly respond to temporal cues in these signals are a prerequisite to decode information
encoded in rapid concentration fluctuations5–7. Power-economic electronic olfaction devices have been demonstrated that can
resolve temporal dynamics of stimulus intensity with sub-second precision18. They are portable and function in uncontrolled
natural environments19, paving the way for an application in robotics, in particular in combination with neuromorphic computing.
A spiking electronic olfaction device capable of high temporal resolution has been described20. Spike trains from such devices
could be fed into networks of these slope detectors, which may aid in gas-based navigation tasks16, 17, 21.

Such robotics applications could be particularly useful in combination with neuromorphic computing. Biophysical neuron
models are inherently inefficient to emulate on event-driven neuromorphic hardware. A point neuron model such as the one
used in this study requires a minimal set of parameters and only needs to communicate with other neurons in the network upon
firing an action potential, therefore fulfilling the criteria of communication sparseness and memory locality that is a prerequisite
for efficient operation on fully-distributed neuromorphic computing approaches. Izhikevich models have been successfully
employed in various applications on neuromorphic hardware9–11.

In this light, one area of potential future work is to focus on more complex stimuli. Gas concentration dynamics in a
turbulent plume are extremely complex2, 5. The Gaussian white noise input signal used in this study is limited in its ability
to represent the rich temporal structure encountered in real odour plumes. One opportunity could be to use time series data
obtained from real odour plumes in wind tunnels22.

Therefore, the broader impact of this study extends beyond simple bio-mimicry. It supports a paradigm shift in neuromorphic
computing, moving towards genuine computing approaches that harness the specific efficiency of employing a neuronal
approach, where time is implicitly included in the computation process.

Future research can implement these detectors in various fields of study that require rapid computations and low-latency
responses, paving the way for advancements in neuromorphic hardware, gas-based navigation research, robotic platforms, and
other domains where efficient neuronal computations are essential.

Method

All simulations were created using PyNN and conducted using the NEURON simulator23 with the built-in Izhikevich neuron
model8. In this section, we present the methods employed in our study, including the search of the Izhikevich parameter space
and the comparison between the discovered Izhikevich bursting slope detector neuron and the two-compartmental biophysical
neuron model1.

i) Identifying slope and amplitude detectors in the Izhikevich parameter space
We conducted a systematic search of the Izhikevich parameter space to identify sets of parameters that produced either slope
or amplitude-detecting neurons. The parameters a, c, and d were explored over a wide range of values. To define the search
boundaries, we examined parameters known to produce specific neural behaviours, such as intrinsically bursting or fast-spiking.
We fixed parameter b to a value of 0.2 based on previous research and its ability to reproduce desired behaviours. By considering
a broad range of parameter values and known neural behaviours, we aimed to comprehensively cover the parameter space and
identify parameter sets that produce slope or amplitude-detecting neurons. Simulations were performed on the UH-HPC cluster
for efficient computational handling.
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In the first instance we injected sinusoidal input signals (rectified, 4 Hz) into each Izhikevich point neuron with the set
parameters. The output spike trains were compared to the original input signal. We specifically looked at the spike rate
corresponding to the rising edges of the input signal to identify slope detectors and the spike rate corresponding to the peaks of
the input signal to identify amplitude detectors. Later, we investigated weather there was a relationship between these detectors
and the bursting mechanisms.

The slope detection percentage and amplitude detection percentage were calculated to find the optimal parameter sets for
the strongest detectors. The slope detection percentage was calculated by determining the number of spikes that occurred on
the slopes of the input signal. For bursting neurons, only burst onsets were considered. This count was then divided by the total
number of spikes or burst onsets observed during the simulation. The resulting fraction represents the proportion of spikes or
burst onsets that coincided with the rising edges of the input signal. By multiplying this fraction by 100, we obtained the slope
detection percentage, which provides a quantitative measure of the neuron’s ability to detect slopes.

Similarly, amplitude detection percentage was calculated by determining the number of spikes that occurred on the peaks of
the signal. We then investigated the relationship between bursting behaviour and amplitude or slope detection. Bursting was
defined by an inter-spike interval (ISI) of 10 ms. The burst percentage was calculated as the percentage of spikes occurring
within a burst.

To assess the robustness of the detectors we discovered, Gaussian white noise signals were generated, low-pass filtered
using a Butterworth filter (5 Hz; µ = .006; σ = .015), and injected into the detectors. The ability of the detectors to respond to
different input types was evaluated. If these detectors are robust (which we show to be the case), their capabilities should not be
restricted to sinusoidal inputs.

ii) Bursting slope detector comparison
We compared the Izhikevich bursting slope detector neuron we discovered to the two-compartmental biophysical neuron
model1. The biophysical neuron model consists of a dendrite compartment responsible for bursting behaviour and a somatic
region generating fast spikes. To ensure a fair comparison, we created a robust neuron that demonstrated 100 % slope detection
percentage and 100 % burst percentage, as identified in our previous investigations.

We conducted a comparison study of the behaviours observed in the biophysical neuron model by generating a Gaussian
white noise signal, applying a Butterworth low-pass filter (5 Hz; µ = .006; σ = .015), and injecting it into the slope-detector
we discovered. We investigated how this detector responds to input signals within a range of frequencies. The response of this
detector was evaluated using reverse correlation techniques (spike-triggered average) to identify the features of the input signal
triggering its response. By aligning the input signal with spike occurrences and averaging across multiple spikes, it reveals the
average input signal associated with the detector’s spiking activity, providing insights into the specific characteristics driving
the detector’s response.

iii) Bi-directional slope detection
We investigated whether the slope-detector we discovered was capable of bi-directional slope detection, as demonstrated by the
biophysical neuron model1. We observed whether it could detect positive slopes of the input signals and the down-strokes when
inverted.

To examine the excitatory response, we generated a Gaussian white noise signal (5 Hz; µ = .008; σ = .015) and directly
injected it into the detector. The sign of the signal was then inverted to simulate the inhibitory input. The resulting signal was
injected into the neuron to observe the inhibitory response. We followed the authors method so we could directly compare the
results.

iv) Burst duration encoding
To conclude our comparison studies, we investigated whether the bursts from the bursting slope detector neuron we discovered
only marked the occurrence of signal up-strokes or if they also signalled the slope magnitude. We therefore observed the
distribution of input slopes against burst durations, i.e., the number of spikes in a burst which was defined by a fixed ISI of
10 ms.

A Kernel Density Estimation (KDE) plot was created to display the number of spikes per burst divided by a Gaussian
density estimation, providing the fraction of bursts for different signal slopes. From this, we created a ROC (Receiver Operator
Characteristic) curve to observe the discriminability between two burst length distributions and used the composite trapezoidal
rule to calculate the AUC (Area Under the Curve) value. An AUC value of 1 indicates perfect discrimination between the two
burst length distributions, meaning there is no overlap and the burst length informs the magnitude of the slope.
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