Replicating Bursting Neurons that Signal Input Slopes with Izhikevich Neurons Rebecca Miko¹, Volker Steuber¹, Michael Schmuker¹

- Introduction firing patterns represent spatial neuronal coding.
- Pyramidal neurons commonly fire with short bursts of high frequency. ► Kepecs et al. [1] present a two-compartmental model of these neurons to understand if these
- Their model fires bursts most often at the positive slopes of naturalistic inputs (and negative) slopes when inverted showing bidirectional slope detection).
- Here, we simplify their model, with the view of a more efficient simulation and implementation on neuromorphic hardware.
- ▶ We investigate whether the same behaviours from [1] can be seen in an Izhikevich neuron [2].

Replicating the Input Signal

The input signal (figure 1) is a reflection of the input from [1].

Figure 1: 1s of Gaussian white noise ($\mu = 0.003$, $\sigma = 0.005$, sampling rate $f_s = 400$ Hz). The Butterworth low-pass filter is applied with cutoff frequency $f_c = 35$ Hz and then rectified.

Bursting Input Slope Detector (BISD)

Izhikevich [2] presents a 2 dimensional system of ordinary differential equations in the form

$$v' = 0.04v^{2} + 5v + 140 - u + I$$

$$u' = a(bv - u)$$
(1)

► *v*, *u* are dimensionless variables

► *a*, *b*, *c*, *d* are dimensionless parameters

 \blacktriangleright ' = $\frac{d}{dt}$ where t is time

Table 1: Parameter comparison

Behaviour Chattering (CH) Fast Spiking (FS) Bursting input slope detector (BISD) Biocomputation Research Group, UH

Time s

if
$$v \ge 30 \,\mathrm{mV}$$
, then $\begin{cases} v \leftarrow c \\ u \leftarrow u + d \end{cases}$ (2)

а	b	С	d	initial	v initial	U
0.02	0.2	-50	2	-70	-14	
0.1	0.2	-65	2	-70	-14	
0.1	0.2	50	2	-70	-14	

Bidirectional Slope Detection by Bursts

► We inject the filtered signal from Figure 1 into a BISD neuron and invert the signal to obtain the inhibitory response, investigating whether it is indeed a slope detector.

Figure 2: The BISD neurons' (see table 1) response to the first second of the stimulus (see Figure 1), showing the excitatory spiketrain and the inhibitory spiketrain.

Spike Triggered Average (STA) Analysis

 \blacktriangleright We comput the STA (figure 1) for different cutoff frequencies (f_c) to investigate whether the BISD fires bursts mostly on the positive slopes of the signal, or negative when inverted.

Figure 3: Normalized STAs for the given lowpass filter frequencies.

Conclusions

▶ Our results show the BISD neuron displays similar behaviours to Kepecs et al.'s model [1]. Figure 2 demonstrates bidirectional slope detection, occurring at low-pass filter cutoff frequencies $f_c > 35Hz$ (figure 3).

► We are now conducting a systematic search of the parameter space for the optimal set.

Bibliography

1. Kepecs, A., Wang, X. J. & Lisman, J. Bursting neurons signal input slope. Journal of Neuroscience 22, 9053-9062. ISSN: 02706474. doi:10.1523/jneurosci.22-20-09053.2002 (2002). 2. Izhikevich, E. M. Simple model of spiking neurons. *IEEE Transactions on Neural Networks* 14, 1569–1572. ISSN: 10459227. doi:10.1109/TNN.2003.820440 (2003).

University of Hertfordshire

r.miko@herts.ac.uk